CHAPTRE SEVEN

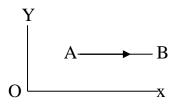
VECTORS

- A vector is a physical quantity which has both magnitude and direction.
- Example are
 - a. A force of 20N acting North.
 - b. A velocity of 5km/h East.

Types of vectors:

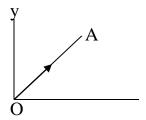
- In general the are two types and these are
 - i. Free vector.
 - ii. Position vector.

Free vector:



- A free vector is a vector which does not pass through any specific position.
- They are usually represented by small letters e.g e.g $\stackrel{a}{\sim}$ $\stackrel{b}{\sim}$ and $\stackrel{c}{\sim}$

Position vector:



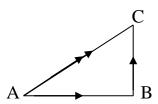
This is a vector which passes through the origin or a specified point.

Vector notation:

- A vector may be represented by a line segment as shown next:

- This given vector can be represented by \overrightarrow{AB} , \overrightarrow{AB} , \overrightarrow{AB} , \overrightarrow{AB} , \overrightarrow{AB} , \overrightarrow{AB}

The Triangle law:



According to the triangle law, $\overline{AC} = \overline{AB} + \overline{BC} \Rightarrow \overline{AB} = \overline{AC} - \overline{BC}$ and $\overline{BC} = \overline{AC} - \overline{AB}$

The unit vector:

- This is a vector whose magnitude is one in the direction under consideration.
- The unit vector along a vector \vec{a} is written as \hat{a}
- Also the unit vector along a vector \overrightarrow{b} is written as \hat{b}
- The unit vector along the vector \overline{BC} is written as \widehat{BC}
- Consider the vector $A \longrightarrow B = 1$
- The vector is written as \overrightarrow{AB} and its unit vector is written as \widehat{AB} .

Equal vectors:

- Two vectors are said to be equal if their magnitudes and directions are equal
- Example are $\overline{AB} = 50km/hE$ and $\overline{CD} = 50km/h$ E.

The negative vector:

- The negative of the vector $\stackrel{a}{\sim}$ is written as -a
- If $\stackrel{-a}{\sim}$ is the negative vector of the vector $\stackrel{a}{\sim}$, then $\stackrel{a}{\sim} + (\stackrel{-a}{\sim}) = \stackrel{o}{\sim}$.
- The vector $\stackrel{-a}{\sim}$ is a vector of the same magnitude as $\stackrel{a}{\sim}$, but it is opposite in direction.
- It must be noted that $\overline{AB} + \overline{BA} = {}^{0}_{\sim}$.

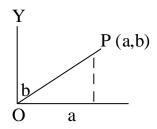
- Also if $\stackrel{b}{\sim} = \overrightarrow{CD}$, then $\stackrel{-b}{\sim} = \overrightarrow{DC}$, and $\overrightarrow{CD} + \overrightarrow{DC} = \stackrel{o}{\sim}$.
- If we consider a vector \overline{CD} , then its negative vector is \overline{DC} .

The zero vector (null vector):

- This is a vector where magnitude is zero and its direction is undefined.
- It is represented by $0 = {0 \choose 0}$

Notation of the magnitude of a vectors:

- If \overline{AB} is a vector, then its magnitude is written as \overline{AB}
- Similarly the magnitude of the vector \vec{b} is written as $|\vec{b}|$
- If $\overline{OP} = \binom{a}{b}$, then its magnitude $= |\overline{OP}| = \sqrt{a^2 + b^2}$



- Q1. i. If $OP = \binom{6}{5}$, find the magnitude of \overline{OP} .
- ii. Find \emptyset the angle between \overline{OP} and the x axis

Soln.

i.
$$|\vec{OP}| = \sqrt{6^2 + 5^2} = \sqrt{61} = 7.8$$

i.
$$|\overrightarrow{OP}| = \sqrt{6^2 + 5^2} = \sqrt{61} = 7.8$$

ii. $\tan \emptyset = \frac{5}{6} \Rightarrow \tan \emptyset = 0.83 \Rightarrow \emptyset = \tan^{-1} 0.83 \Rightarrow \emptyset = 40.$

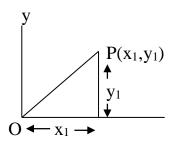
Scalar multiplication of vector:

- If $^{\land}$ is the scalar and \overline{a} is the vector, then the scalar x the vector = $^{\land} \vec{a}$
- When a scalar multiplies a vector, the product is also a vector, and for this reason \bar{a} is also a vector.
- The vector $\stackrel{\wedge a}{\sim}$ is parallel to $\stackrel{a}{\sim}$, and is in the same direction as $\stackrel{a}{\sim}$, but has $\stackrel{\wedge}{\sim}$ times the magnitude of $\stackrel{a}{\sim}$.
- For example the vectors \vec{a} and $2\vec{a}$ have the same direction.

i.e
$$|\vec{a}|$$
 $|2\vec{a}|$

- But the vectors \vec{a} and and $-2\vec{a}$ are opposite in direction.
- $(\vec{a} + \vec{b}) = \vec{a} + \vec{b}$, e.g $6(^a_{\sim} + ^b_{\sim}) = 6^a_{\sim} + 6^b_{\sim}$
- Also $(2+4) \vec{a} = 2\vec{a} + 4\vec{a}$
- Finally $_1(_2\vec{a}) = _1^1\vec{a}$, e.g $3(2\vec{a}) = 6\vec{a}$

N/B:



- If $P(x_1,y_1)$ is a point in the x-y plane, then the position vector of P relative to the origin, O is defined by $\overrightarrow{OP} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$
- Also if A = (0,6), then $\overrightarrow{OA} = \begin{pmatrix} 0 \\ 6 \end{pmatrix}$
- Q2. Find the numbers m and n such that

$$M\binom{3}{5} + n\binom{2}{1} = \binom{4}{9}$$

Soln.

$$M \binom{3}{5} + n \binom{2}{1} = \binom{4}{9} \Longrightarrow \binom{3m}{5m} + \binom{2n}{n} = \frac{4}{9}$$

$$\Rightarrow 3m + 2n = 4 \dots \dots eqn(1).$$

$$5m + n = 9 \dots eqn(2)$$

Solve eqns (1) and (2) simultaneously

$$\Rightarrow$$
 $m = 2$ and $n = -1$

Q3. If mp + nq = $\binom{4}{3}$, find m and n where m and n are scalar, given that p = $\binom{2}{3}$ and $q = \binom{2}{5}$

Soln.

$$p = {2 \choose 3}$$
 and $q = {2 \choose 5}$ but $mp + nq = {4 \choose 3}$

$$\Rightarrow m \binom{2}{3} + n \binom{2}{5} = \binom{4}{3} \Rightarrow \binom{2m}{3m} + \binom{2n}{5n} = \binom{4}{3}$$

$$\Rightarrow 2m + 2n = 4 - (1)$$

$$3m + 5n = 3 - (3)$$

Solve eqns (1) and (2) simultaneously to get the values of m and n.

Q4. If
$$r = \binom{3}{1}$$
 and $s = \binom{-2}{1}$, evaluate $6(r + 25)$

Soln.

Consider 6(r + 2s), solve what is inside the bracket first $\Rightarrow r + 2s = \binom{3}{1} + \binom{-2}{1} = \binom{3}{1} + 2\binom{-4}{2} \Rightarrow r + 2s = \binom{3+\overline{4}}{1+2} = \binom{-1}{3} \Rightarrow 6(r + 2s) = 6\binom{-1}{3} = \binom{-6}{18}$

Q5. If
$$p = \binom{1}{2}$$
, $q = \binom{-2}{3}$ and $r = \binom{1}{1}$, find $2p - q + r$

Soln.

$$2p - q + r = 2\binom{1}{2} - \binom{-2}{3} + \binom{1}{1} = \binom{2}{4} - \binom{-2}{3} + \binom{1}{1} = \binom{2+2+1}{4-3+1} = \binom{5}{2} \implies 2p - q + r = \binom{5}{2}.$$

Q6. If the vector
$$p = \binom{2}{3}$$
, $q = \binom{2}{5}$ and $r = \frac{1}{2}(q - p)$,

Find the vector r.

Soln.

$$r = \frac{1}{2}(q - p) \implies r = \frac{1}{2}\{\binom{2}{5} - \binom{2}{3}\} \implies r = \frac{1}{2}\binom{2-2}{5-3} = \frac{1}{2}\binom{0}{2} = \binom{\frac{1}{2}(0)}{\frac{1}{2}(2)} = \binom{0}{1} \implies r = \binom{0}{1}$$

N/B: Given the points A and B, then $\overrightarrow{AB} = B - A$.

Examples: If
$$A = \binom{5}{2}$$
 and $B = \binom{10}{6}$, then $\overrightarrow{AB} = B - A = \binom{10}{6} - \binom{5}{2} = \binom{10-5}{6-2} = \binom{5}{4}$

Also if
$$C = {4 \choose 2}$$
 and $D = {6 \choose 1}$, then $\overrightarrow{CD} = D - C = {6 \choose 1} - {4 \choose 2} = {6-4 \choose 1-2} = {2 \choose -1} \Rightarrow \overrightarrow{CD} = {2 \choose -1}$

Q7. If A = (4, 5) and B = (6, 2), find \overline{AB}

Soln

$$A = (4,5) \Rightarrow A = {4 \choose 5}. \text{ Also } B = (6,2) \Rightarrow B = {6 \choose 2}. \overline{AB} = B - A = {6 \choose 2} - {4 \choose 5} = {6-4 \choose 2-5} = {2 \choose -3} \Rightarrow \overline{AB} = {2 \choose -3}.$$

N/B: If
$$\overline{AB} = \binom{4}{2} \Longrightarrow \overline{BA} = -\overline{AB} = -\binom{4}{2} = \binom{-4}{-2}$$

Also if
$$\overrightarrow{CD} = {\binom{-2}{5}} \Longrightarrow \overrightarrow{DC} = -\overrightarrow{CD} = -{\binom{-2}{5}} = {\binom{2}{-5}}$$

Q8. If A and B are the points (2, 1) and (1, 2) respectively, find \overline{AB} and \overline{BA} Soln.

$$A = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \Longrightarrow \overrightarrow{AB} = B - A = \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1-2 \\ 2-1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
$$\overline{BA} = -\overline{AB} = -\begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$